51 research outputs found

    Crystal Structure of Human Cytosolic 5′-Nucleotidase II INSIGHTS INTO ALLOSTERIC REGULATION AND SUBSTRATE RECOGNITION

    Get PDF
    Cytosolic 5′-nucleotidase II catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5′-monophosphates and regulates the IMP and GMP pools within the cell. It possesses phosphotransferase activity and thereby also catalyzes the reverse reaction. Both reactions are allosterically activated by adenine-based nucleotides and 2,3-bisphosphoglycerate. We have solved structures of cytosolic 5′-nucleotidase II as native protein (2.2 A) and in complex with adenosine (1.5A) and beryllium trifluoride (2.15A). The tetrameric enzyme is structurally similar to enzymes of the haloacid dehalogenase (HAD) superfamily, including mitochondrial 5′(3′)-deoxyribonucleotidase and cytosolic 5′-nucleotidase III but possesses additional regulatory regions that contain two allosteric effector sites. At effector site 1 located near a subunit interface we modeled diadenosine tetraphosphate with one adenosine moiety in each subunit. This efficiently glues the tetramer subunits together in pairs. The model shows why diadenosine tetraphosphate but not diadenosine triphosphate activates the enzyme and supports a role for cN-II during apoptosis when the level of diadenosine tetraphosphate increases. We have also modeled 2,3-bisphosphoglycerate in effector site 1 using one phosphate site from each subunit. By comparing the structure of cytosolic 5′-nucleotidase II with that of mitochondrial 5′(3′)-deoxyribonucleotidase in complex with dGMP, we identified residues involved in substrate recognition

    Expressing the human proteome for affinity proteomics: optimising expression of soluble protein domains and in vivo biotinylation

    Get PDF
    The generation of affinity reagents to large numbers of human proteins depends on the ability to express the target proteins as high-quality antigens. The Structural Genomics Consortium (SGC) focuses on the production and structure determination of human proteins. In a 7-year period, the SGC has deposited crystal structures of >800 human protein domains, and has additionally expressed and purified a similar number of protein domains that have not yet been crystallised. The targets include a diversity of protein domains, with an attempt to provide high coverage of protein families. The family approach provides an excellent basis for characterising the selectivity of affinity reagents. We present a summary of the approaches used to generate purified human proteins or protein domains, a test case demonstrating the ability to rapidly generate new proteins, and an optimisation study on the modification of >70 proteins by biotinylation in vivo. These results provide a unique synergy between large-scale structural projects and the recent efforts to produce a wide coverage of affinity reagents to the human proteome

    Autoantigenic properties of the aminoacyl tRNA synthetase family in idiopathic inflammatory myopathies

    Get PDF
    Objectives: Autoantibodies are thought to play a key role in the pathogenesis of idiopathic inflammatory myopathies (IIM). However, up to 40% of IIM patients, even those with clinical manifestations of anti-synthetase syndrome (ASSD), test seronegative to known myositis-specific autoantibodies. We hypothesized the existence of new potential autoantigens among human cytoplasmic aminoacyl tRNA synthetases (aaRS) in patients with IIM. Methods: Plasma samples from 217 patients with IIM according to 2017 EULAR/ACR criteria, including 50 patients with ASSD, 165 without, and two with unknown ASSD status were identified retrospectively, as well as age and gender-matched sera from 156 population controls, and 219 disease controls. Patients with previously documented ASSD had to test positive for at least one of the five most common anti-aaRS autoantibodies (anti-Jo1, -PL7, -PL12, -EJ, and -OJ) and present with one or more of the following clinical manifestations: interstitial lung disease, myositis, arthritis, Raynaud's phenomenon, fever, or mechanic's hands. Demographics, laboratory, and clinical data of the IIM cohort (ASSD and non-ASSD) were compared. Samples were screened using a multiplex bead array assay for presence of autoantibodies against a panel of 117 recombinant protein variants, representing 33 myositis-related proteins, including all nineteen cytoplasmic aaRS. Prospectively collected clinical data for the IIM cohort were retrieved and compared between groups within the IIM cohort and correlated with the results of the autoantibody screening. Principal component analysis was used to analyze clinical manifestations between ASSD, non-ASSD groups, and individuals with novel anti-aaRS autoantibodies. Results: We identified reactivity towards 16 aaRS in 72 of the 217 IIM patients. Twelve patients displayed reactivity against nine novel aaRS. The novel autoantibody specificities were detected in four previously seronegative patients for myositis-specific autoantibodies and eight with previously detected myositis-specific autoantibodies. IIM individuals with novel anti-aaRS autoantibodies (n = 12) all had signs of myositis, and they had either muscle weakness and/or muscle enzyme elevation, 2/12 had mechanic's hands, 3/12 had interstitial lung disease, and 2/12 had arthritis. The individuals with novel anti-aaRS and a pathological muscle biopsy all presented widespread up-regulation of major histocompatibility complex class I. The reactivities against novel aaRS could be confirmed in ELISA and western blot. Using the multiplex bead array assay, we could confirm previously known reactivities to four of the most common aaRS (Jo1, PL12, PL7, and EJ (n = 45)) and identified patients positive for anti-Zo, -KS, and -HA (n = 10) that were not previously tested. A low frequency of anti-aaRS autoantibodies was also detected in controls. Conclusion: Our results suggest that most, if not all, cytoplasmic aaRS may become autoantigenic. Autoantibodies against new aaRS may be found in plasma of patients previously classified as seronegative with potential high clinical relevance.publishedVersio

    Recombinant renewable polyclonal antibodies

    Get PDF
    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products

    Pan-Pathway Based Interaction Profiling of FDA-Approved Nucleoside and Nucleobase Analogs with Enzymes of the Human Nucleotide Metabolism

    Get PDF
    To identify interactions a nucleoside analog library (NAL) consisting of 45 FDA-approved nucleoside analogs was screened against 23 enzymes of the human nucleotide metabolism using a thermal shift assay. The method was validated with deoxycytidine kinase; eight interactions known from the literature were detected and five additional interactions were revealed after the addition of ATP, the second substrate. The NAL screening gave relatively few significant hits, supporting a low rate of “off target effects.” However, unexpected ligands were identified for two catabolic enzymes guanine deaminase (GDA) and uridine phosphorylase 1 (UPP1). An acyclic guanosine prodrug analog, valaciclovir, was shown to stabilize GDA to the same degree as the natural substrate, guanine, with a ΔTagg around 7°C. Aciclovir, penciclovir, ganciclovir, thioguanine and mercaptopurine were also identified as ligands for GDA. The crystal structure of GDA with valaciclovir bound in the active site was determined, revealing the binding of the long unbranched chain of valaciclovir in the active site of the enzyme. Several ligands were identified for UPP1: vidarabine, an antiviral nucleoside analog, as well as trifluridine, idoxuridine, floxuridine, zidovudine, telbivudine, fluorouracil and thioguanine caused concentration-dependent stabilization of UPP1. A kinetic study of UPP1 with vidarabine revealed that vidarabine was a mixed-type competitive inhibitor with the natural substrate uridine. The unexpected ligands identified for UPP1 and GDA imply further metabolic consequences for these nucleoside analogs, which could also serve as a starting point for future drug design

    Functional proteomics : Generation and analysis of cDNA-encoded proteins

    No full text
    NR 2014080

    Structural Basis for the Specificity of Human NUDT16 and Its Regulation by Inosine Monophosphate.

    No full text
    Human NUDT16 is a member of the NUDIX hydrolase superfamily. After having been initially described as an mRNA decapping enzyme, recent studies conferred it a role as an "housecleaning" enzyme specialized in the removal of hazardous (deoxy)inosine diphosphate from the nucleotide pool. Here we present the crystal structure of human NUDT16 both in its apo-form and in complex with its product inosine monophosphate (IMP). NUDT16 appears as a dimer whose formation generates a positively charged trench to accommodate substrate-binding. Complementation of the structural data with detailed enzymatic and biophysical studies revealed the determinants of substrate recognition and particularly the importance of the substituents in position 2 and 6 on the purine ring. The affinity for the IMP product, harboring a carbonyl in position 6 on the base, compared to purine monophosphates lacking a H-bond acceptor in this position, implies a catalytic cycle whose rate is primarily regulated by the product-release step. Finally, we have also characterized a phenomenon of inhibition by the product of the reaction, IMP, which might exclude non-deleterious nucleotides from NUDT16-mediated hydrolysis regardless of their cellular concentration. Taken together, this study details structural and regulatory mechanisms explaining how substrates are selected for hydrolysis by human NUDT16
    corecore